HW 1 Key

1.3

For the following differential equations, determine if they are linear and determine their order.

1) $t^{2} y^{\prime \prime}+t y^{\prime}+2 y=\sin (t)$ order: 2
linear
2) $\left(1+y^{2}\right) y^{\prime \prime}+t y^{\prime}+y=e^{t}$ order: 2
non-linear
3) $y^{(4)}+y^{\prime \prime \prime}+y^{\prime \prime}+y=1$ order: 4
linear
4) $y^{\prime}+t y^{2}=0$
order: 1
non-linear
5) $y^{\prime \prime}+\sin (t+y)=\sin (t)$
order: 2
non-linear
6) $y^{\prime \prime \prime}+t y^{\prime}+\cos ^{2}(t) y=t^{3}$
order: 3
linear

Check that the given equations are solutions to the given differential equation.
11) $2 t^{2} y^{\prime \prime}+3 t y^{\prime}-y=0, t>0$

1. $y(t)=t^{1 / 2}$

$$
\begin{aligned}
y^{\prime} & =\frac{1}{2} t^{-1 / 2} \\
y^{\prime \prime} & =-\frac{1}{4} t^{-3 / 2}
\end{aligned}
$$

Check:

$$
2 t^{2}\left(-\frac{1}{4} t^{-3 / 2}\right)+3 t\left(\frac{1}{2} t^{-1 / 2}\right)-t^{1 / 2}=0
$$

2. $y(t)=t^{-1}$

$$
\begin{aligned}
& y^{\prime}=-t^{-2} \\
& y^{\prime \prime}=2 t^{-3}
\end{aligned}
$$

Check:

$$
2 t^{2}\left(2 t^{-3}\right)+3 t\left(-t^{-2}\right)-t^{-1}=0
$$

13) $y^{\prime \prime}+y=\sec (t), 0<t<\pi / 2$

$$
\begin{gathered}
y=\cos (t) \ln (\cos (t))+t \sin (t) \\
y^{\prime}=-\sin (t) \ln (\cos (t))-\sin (t)+\sin (t)+t \cos (t) \\
y^{\prime \prime}=-\cos (t) \ln (\cos (t))+\sin ^{2}(t) / \cos (t)+\cos (t)-t \sin (t)
\end{gathered}
$$

Check:

$$
\sin ^{2}(t) / \cos (t)+\cos (t)=\left(\sin ^{2}(t)+\cos ^{2}(t)\right) / \cos (t)=\sec (t)
$$

15) Find r such that $y=e^{r t}$ is a solution to the differential equation

$$
y^{\prime}+2 y=0 .
$$

If $y=e^{r t}$, then $y^{\prime}=r e^{r t}$. Plugging in to the differential equation, we get: $r e^{r t}+2 e^{r t}=0$. Since $e^{r t}>0$ for all r and t, we can divide both sides by $e^{r t}$ and see that the equation is solved exactly when $r+2=0$ and thus $r=-2$.
2.1

Find explicit solutions to the following initial value problems.
13) $y^{\prime}-y=2 t e^{2 t}, y(0)=1$

Integrating factor: $\mu(t)=\exp \int(-1) d t=e^{-t}$.

$$
e^{-t} y=\int 2 t e^{2 t} d t
$$

and use integration by parts to get

$$
e^{-t} y=2\left(t e^{t}-e^{t}\right)+C
$$

use initial condition

$$
1=0-2+C ; \quad C=3
$$

Therefore, we obtain $y=2 e^{2 t}(t-1)+3 e^{t}$ as the solution.
16) $y^{\prime}+(2 / t) y=\cos (t) / t^{2}, y(\pi)=0, t>0$

Integrating factor: $\exp \int 2 / t d t=e^{2 \ln |t|}=t^{2}$.

$$
\begin{gathered}
t^{2} y=\int \cos (t) d t=\sin (t)+C \\
y=\sin (t) / t^{2}+C / t^{2}
\end{gathered}
$$

use initial condition

$$
0=0+C / \pi^{2} ; \quad C=0
$$

Therefore, we obtain $y=\sin (t) / t^{2}$ as the solution.
24) $t y^{\prime}+(t+1) y=2 t e^{-t}, y(1)=a, t>0$
(a) $y \rightarrow 0$ as $t \rightarrow \infty$. Some values of a give a solution which tends towards ∞ as t goes to 0 , others tend toward $-\infty$.
(b) Integrating factor: $\mu(t)=\exp \int(t+1) / t d t=t e^{t}$

$$
\begin{gathered}
t e^{t} y=\int 2 t d t=t^{2}+C \\
y=\frac{t^{2}+C}{t e^{t}}
\end{gathered}
$$

Use initial condition

$$
a=\frac{1+C}{e} ; \quad C=a e-1
$$

Therefore the solution to the initial value problem is

$$
y=t e^{-t}+(a e-1) /\left(t e^{t}\right)
$$

As $t \rightarrow 0$,

$$
y \rightarrow \lim _{t \rightarrow 0}\left[t e^{-t}+(a e-1) /\left(t e^{t}\right)\right]=\lim _{t \rightarrow 0}\left[(a e-1) /\left(t e^{t}\right)\right] .
$$

Therefore, the change in behavior happens when $a e-1=0$. So, $a_{0}=1 / e$. (c) Using the critical value, $y=t / e^{t}$, and we have $y \rightarrow 0$ as $t \rightarrow 0$.
35) Give a first order linear differential equation, all of whose solutions tend toward $3-t$ as $t \rightarrow \infty$.
We know the equation has the form $y^{\prime}+p(t) y=g(t)$, so we must determine which $p(t)$ and $g(t)$ give the behavior we want. For simplicity, let's see if we can find a solution where $p(t)=1$. Let us also assume that one solution will be exactly $y=3-t$. Now we may determine $g(t)$.

$$
\begin{gathered}
y^{\prime}+y=g(t) \\
-1+(3-t)=g(t) \\
g(t)=2-t
\end{gathered}
$$

Now check that all solutions of $y^{\prime}+y=2-t$ do indeed have the desired property.
2.2

Solve the following separable differential equations.
1)

$$
\begin{gathered}
d y / d x=x^{2} / y \\
\int y d y=\int x^{2} d x \\
\frac{1}{2} y^{2}=\frac{1}{3} x^{3}+C
\end{gathered}
$$

We leave this as an implicit solution to the differential equation. This solution is valid when $y \neq 0$.
2)

$$
\begin{gathered}
d y / d x=\frac{x^{2}}{y\left(1+x^{3}\right)} \\
\int y d y=\int \frac{x^{2}}{1+x^{3}} d x \\
\frac{1}{2} y^{2}=\frac{1}{3} \ln \left|1+x^{3}\right|+C
\end{gathered}
$$

We leave this as an implicit solution to the differential equation.This solution is valid when $x \neq-1$ and $y \neq 0$.
3)

$$
\begin{gathered}
d y / d x+y^{2} \sin (x)=0 \\
\int \frac{1}{y^{2}} d y=\int-\sin (x) d x \\
-\frac{1}{y}=\cos (x)+C \\
y=\frac{1}{C-\cos (x)}
\end{gathered}
$$

This solution is valid when $y \neq 0$. Also, $y=0$ is a (constant) solution to the differential equation.
6)

$$
\begin{gathered}
x \frac{d y}{d x}=\left(1-y^{2}\right)^{1 / 2} \\
\int\left(1-y^{2}\right)^{-1 / 2} d y=\int \frac{1}{x} d x \\
\arcsin (y)=\ln |x|+C \\
y=\sin (\ln |x|+C)
\end{gathered}
$$

This solution is valid when $y \neq 0$ and $y<1$. Also $y=1$ and $y=-1$ are (constant) solutions to the differential equation.
15) (a) $d y / d x=\frac{2 x}{1+2 y}, y(2)=0$

$$
\begin{gathered}
\int 1+2 y d y=\int 2 x d x \\
y+y^{2}=x^{2}+C
\end{gathered}
$$

Find the value of C using initial conditions.

$$
\begin{gathered}
0=4+C \\
C=-4
\end{gathered}
$$

We obtain the formula

$$
y+y^{2}-\left(x^{2}+4\right)=0
$$

Using the quadratic formula and the initial condition (to determine $+/-$), we find:

$$
y=-\frac{1}{2}+\frac{1}{2} \sqrt{4 x^{2}-15}
$$

(c) Certainly, we must have that $4 x^{2}-15 \geq 0$, which implies that $|x| \geq \sqrt{15 / 4}$. Since the initial condition places x on the positive side of this, we must have that $x \geq \sqrt{15 / 4}$. Finally, since $1+2 y \neq 0$ (since you can't divide by 0), $y \neq-1 / 2$. Therefore, $\sqrt{4 x^{2}-15} \neq 0$ and thus, $x \neq \sqrt{15 / 4}$. Therefore, this solution is defined when $x>\sqrt{15 / 4}$
30) $\frac{d y}{d x}=\frac{y-4 x}{x-y}$
(a) Multiply by $1=\frac{1 / x}{1 / x}$
(b) Use chain rule: $y=x v(x) \Longrightarrow d y / d x=v+x \frac{d v}{d x}$.
(c) The equation separates as

$$
\frac{1-v}{v^{2}-4} d v=\frac{1}{x} d x
$$

(d) To handle the left integral above, use partial fraction decomposition.

You should get something equivalent to the following:

$$
-\frac{1}{4} \ln |v-2|-\frac{3}{4} \ln |v+2|=\ln |x|+C .
$$

Getting rid of \ln, and letting $A=e^{C}$, we obtain:

$$
(v-2)^{-1 / 4}(v+2)^{-3 / 4}=A x
$$

(e)

$$
(y / x-2)^{-1 / 4}(y / x+2)^{-3 / 4}=A x
$$

